

CD Markers for Reactive vs CLL Infiltrate

CD Marker	Reactive Infiltrate	CLL Neoplastic Infiltrate
CD3	+	+
CD5	+	+
CD20	-	+
CD23	7.	+
CD43	+	+

Abbreviation: CLL, chronic lymphocytic leukemia.

Data from Wilson et al.7

How I treat CLL...

Pankaj Malhotra PGI, Chandigarh 30% never require treatment

Progressive cytopenias (Disease/autoimmune) (Anemia, thrombocytopenia)

Indications of Treatment

Progressive lymphadenopathy

Weight loss, Night sweats, Fever

Recurrent infections, organ dysfunction

The iwCLL defines "active disease" by the presence of one or more of the following criteria:

Evidence of progressive marrow failure as manifested by the development of, or worsening of, anemia and/or thrombocytopenia.*

Massive (ie, ≥6 cm below the left costal margin) or progressive or symptomatic splenomegaly.

Massive nodes (ie, ≥10 cm in longest diameter) or progressive or symptomatic lymphadenopathy.

The iwCLL defines "active disease" by the presence of one or more of the following criteria:

Evidence of progressive marrow failure as manifested by the development of, or worsening of, anemia and/or thrombocytopenia.*

Massive (ie, ≥6 cm below the left costal margin) or progressive or symptomatic splenomegaly.

Massive nodes (ie, ≥10 cm in longest diameter) or progressive or symptomatic lymphadenopathy.

Progressive lymphocytosis with an increase of >50% over a 2-month period or LDT of <6 months. LDT can be obtained by linear regression extrapolation of absolute lymphocyte counts obtained at intervals of 2 weeks over an observation period of 2 to 3 months. Patients with initial blood lymphocyte counts of <30,000/microL, may require a longer observation period to determine the LDT. In addition, factors contributing to lymphocytosis or lymphadenopathy other than CLL (eg, infection) should be excluded.

The iwCLL defines "active disease" by the presence of one or more of the following criteria:

Evidence of progressive marrow failure as manifested by the development of, or worsening of, anemia and/or thrombocytopenia.*

Massive (ie, ≥6 cm below the left costal margin) or progressive or symptomatic splenomegaly.

Massive nodes (ie, ≥10 cm in longest diameter) or progressive or symptomatic lymphadenopathy.

Progressive lymphocytosis with an increase of >50% over a 2-month period or LDT of <6 months. LDT can be obtained by linear regression extrapolation of absolute lymphocyte counts obtained at intervals of 2 weeks over an observation period of 2 to 3 months. Patients with initial blood lymphocyte counts of <30,000/microL, may require a longer observation period to determine the LDT. In addition, factors contributing to lymphocytosis or lymphadenopathy other than CLL (eg, infection) should be excluded.

Autoimmune anemia and/or thrombocytopenia that is poorly responsive to corticosteroids.

The iwCLL defines "active disease" by the presence of one or more of the following criteria:

Evidence of progressive marrow failure as manifested by the development of, or worsening of, anemia and/or thrombocytopenia.*

Massive (ie, ≥6 cm below the left costal margin) or progressive or symptomatic splenomegaly.

Massive nodes (ie, ≥10 cm in longest diameter) or progressive or symptomatic lymphadenopathy.

Progressive lymphocytosis with an increase of >50% over a 2-month period or LDT of <6 months. LDT can be obtained by linear regression extrapolation of absolute lymphocyte counts obtained at intervals of 2 weeks over an observation period of 2 to 3 months. Patients with initial blood lymphocyte counts of <30,000/microL, may require a longer observation period to determine the LDT. In addition, factors contributing to lymphocytosis or lymphadenopathy other than CLL (eg, infection) should be excluded.

Autoimmune anemia and/or thrombocytopenia that is poorly responsive to corticosteroids.

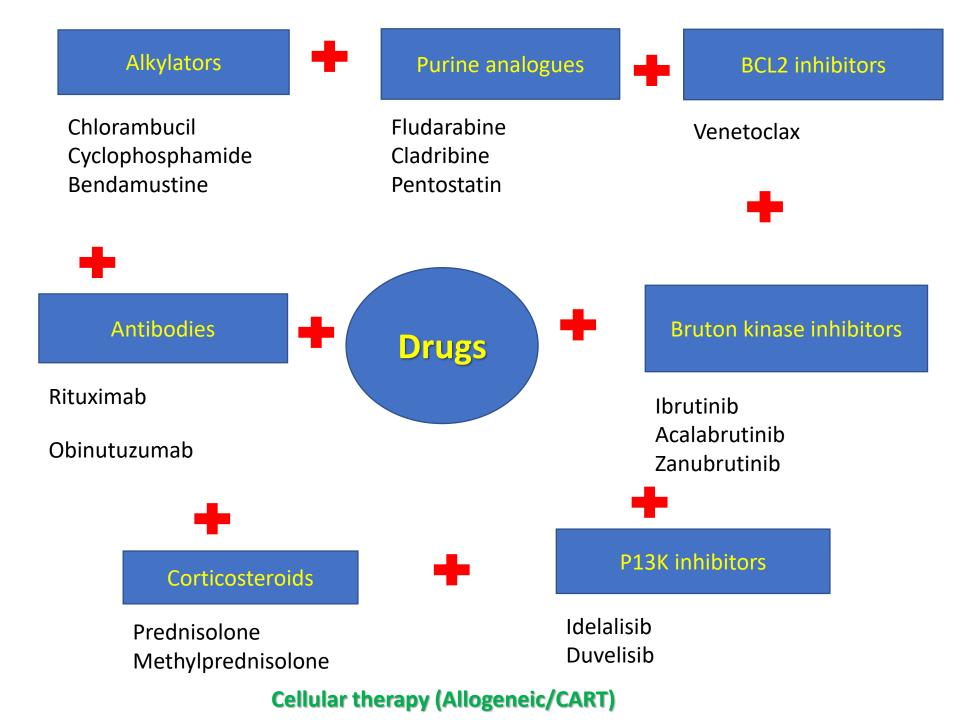
Symptomatic or functional extranodal involvement (eg, skin, kidney, lung, spine).

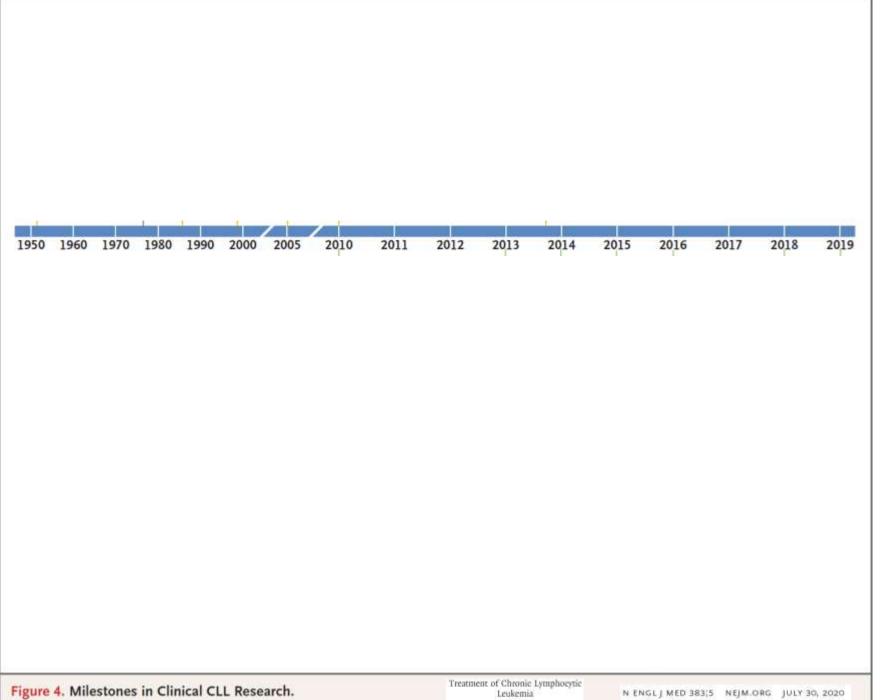
The iwCLL defines "active disease" by the presence of one or more of the following criteria:

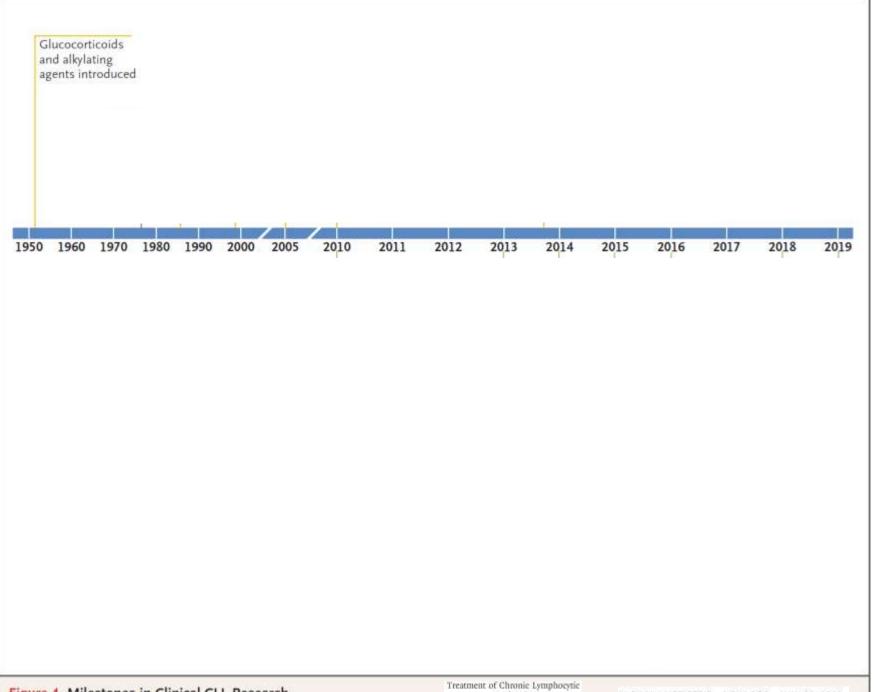
Evidence of progressive marrow failure as manifested by the development of, or worsening of, anemia and/or thrombocytopenia.*

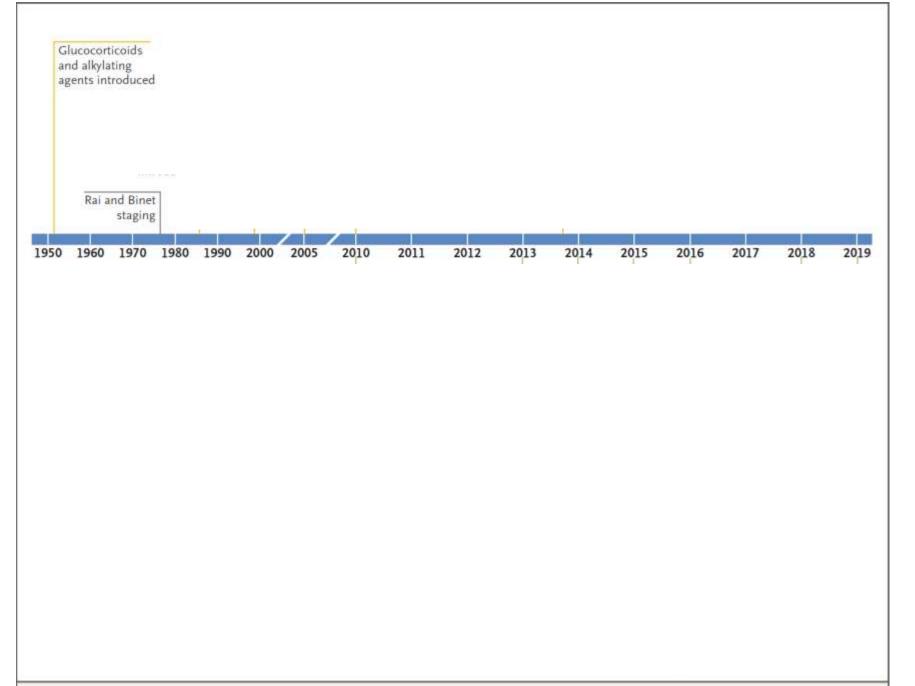
Massive (ie, ≥6 cm below the left costal margin) or progressive or symptomatic splenomegaly.

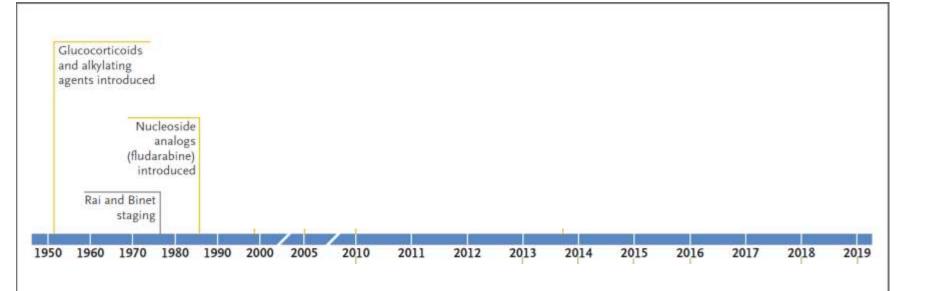
Massive nodes (ie, ≥10 cm in longest diameter) or progressive or symptomatic lymphadenopathy.

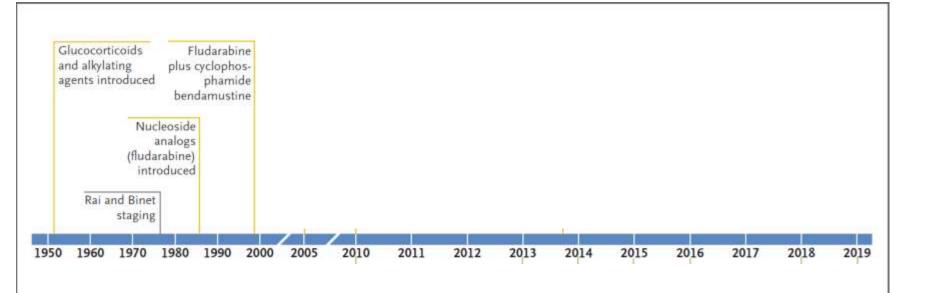

Progressive lymphocytosis with an increase of >50% over a 2-month period or LDT of <6 months. LDT can be obtained by linear regression extrapolation of absolute lymphocyte counts obtained at intervals of 2 weeks over an observation period of 2 to 3 months. Patients with initial blood lymphocyte counts of <30,000/microL, may require a longer observation period to determine the LDT. In addition, factors contributing to lymphocytosis or lymphadenopathy other than CLL (eg, infection) should be excluded.

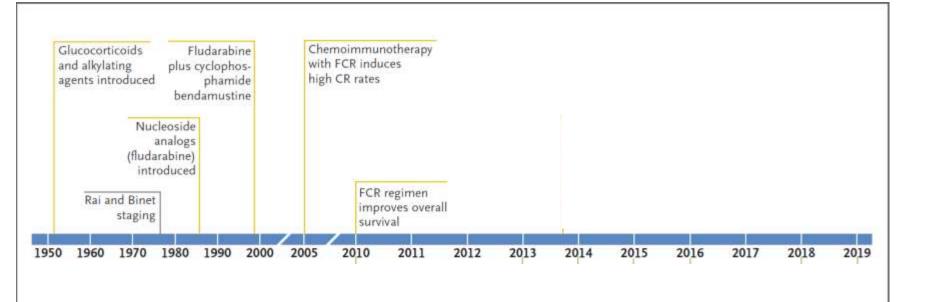

Autoimmune anemia and/or thrombocytopenia that is poorly responsive to corticosteroids.

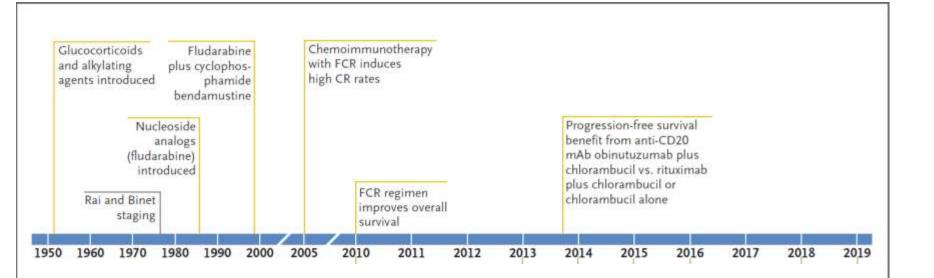

Symptomatic or functional extranodal involvement (eg, skin, kidney, lung, spine).

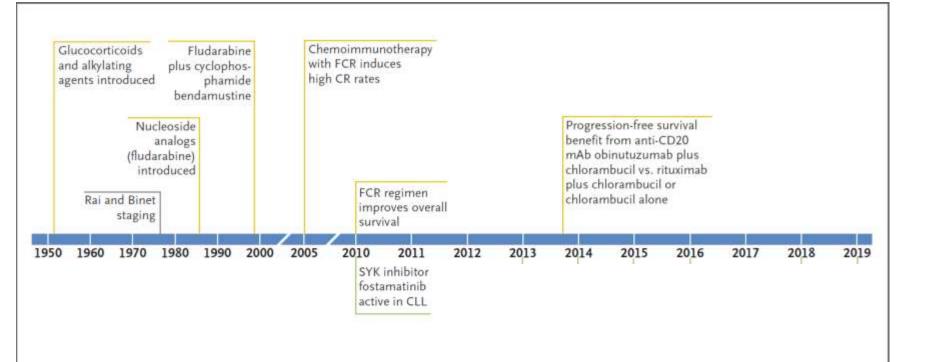

Constitutional symptoms, defined as any one or more of the following disease-related symptoms or signs:

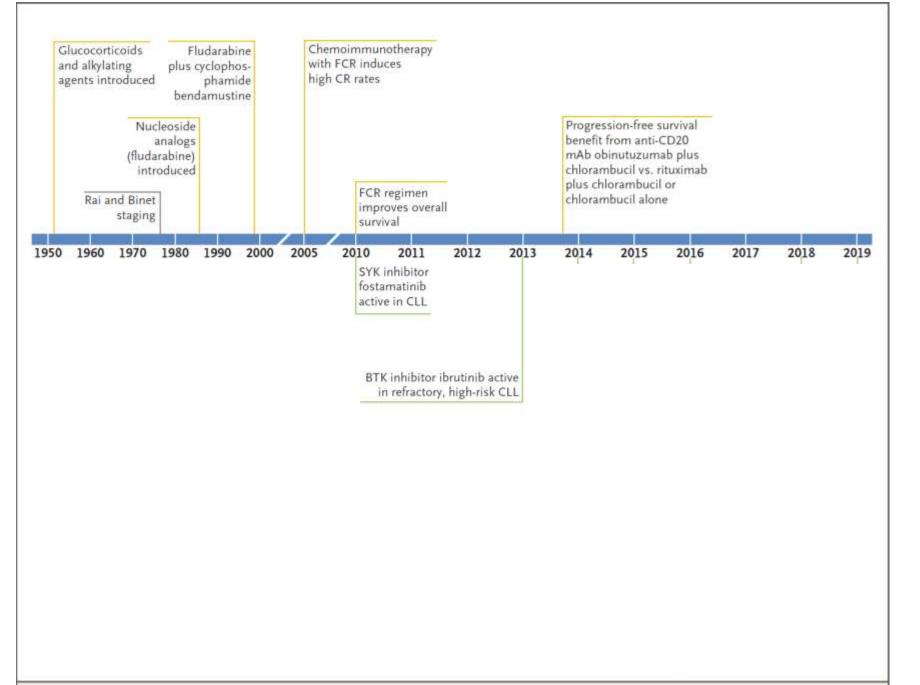

- a. Unintentional weight loss of ≥10% within the previous 6 months
- b. Significant fatigue (ie, ECOG PS ≤2; inability to work or perform usual activities)
- c. Fevers >100.5°F or 38.0°C for ≥2 weeks without other evidence of infection
- d. Night sweats for ≥1 month without evidence of infection

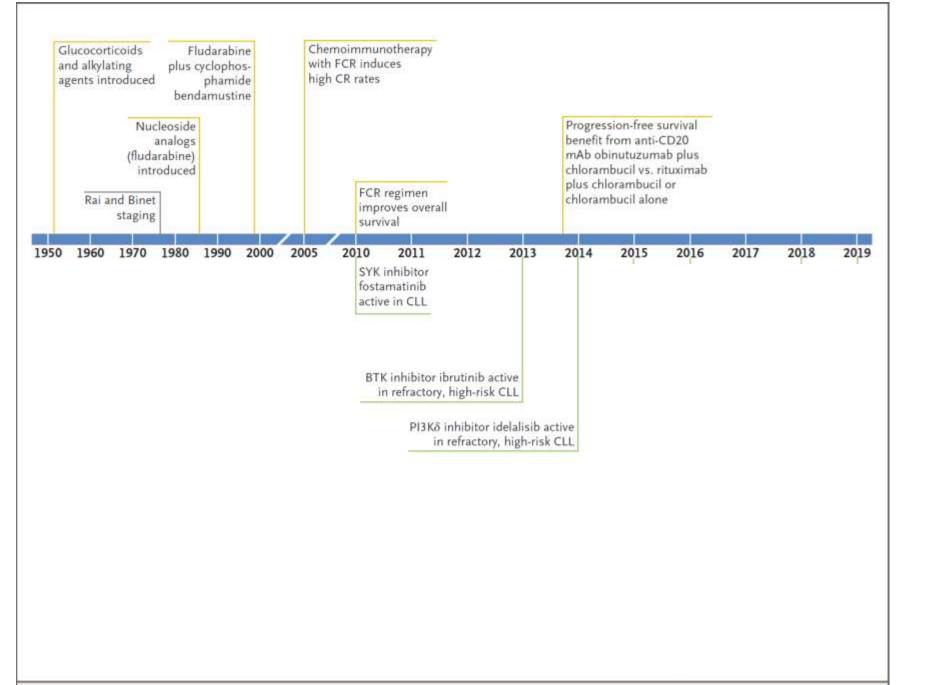


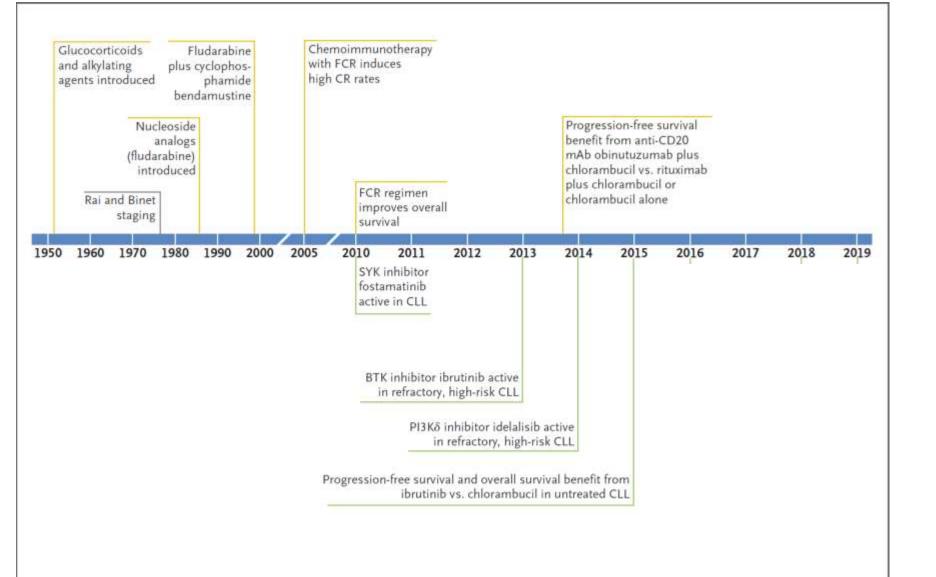


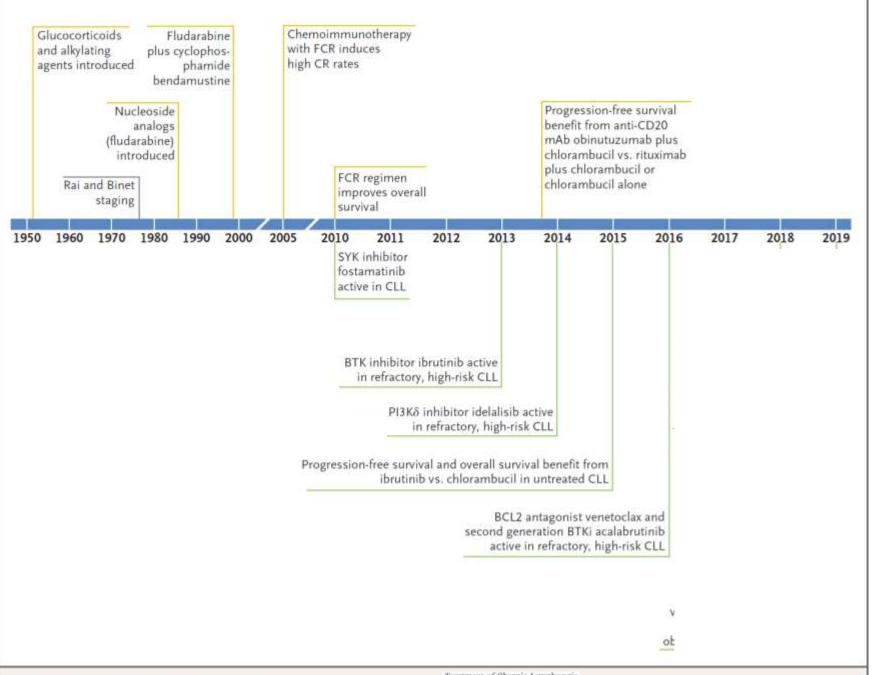


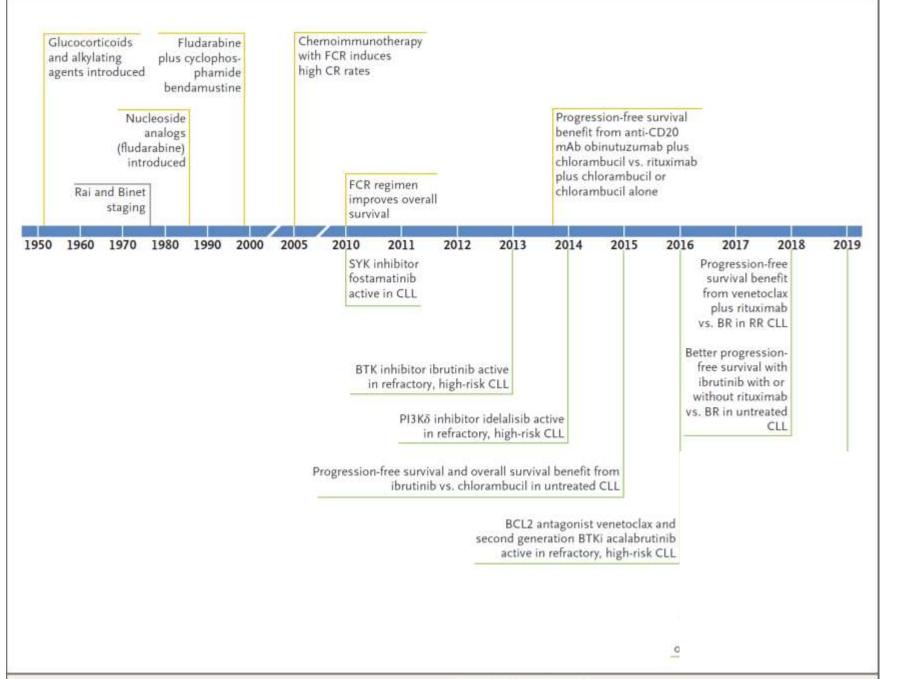


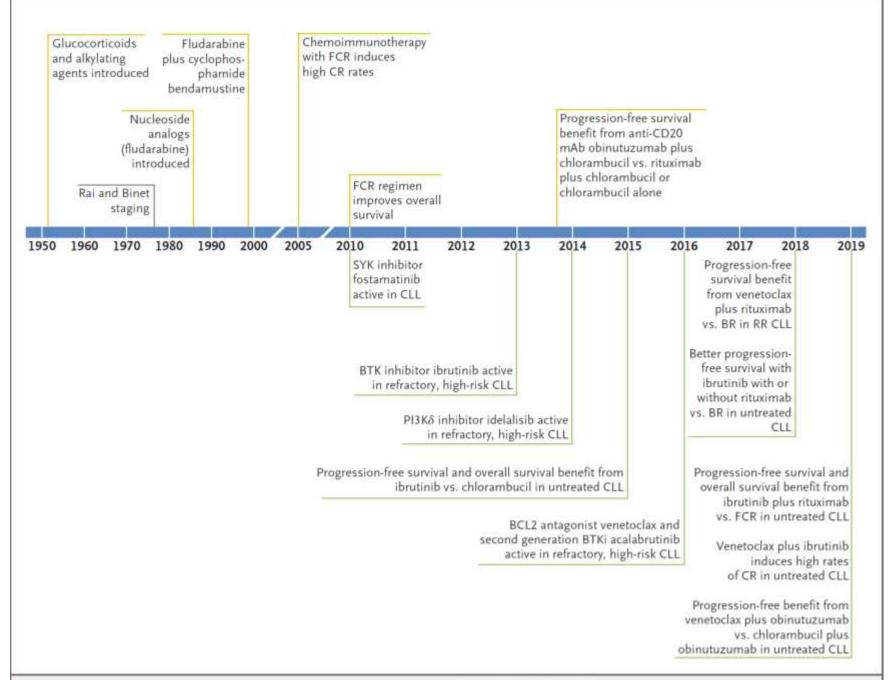












How do you tailor treatment

Risk stratification

Table 1 The CLL-International Prognostic Index³⁰

Prognostic factor	Points
Del17p on FISH or <i>TP53</i> mutation	4
Jnmutated IGHV genes	2
erum β2 microglobulin >3.5 mg/L	2
ai stage I–IV	1
Age >65 years	1

Cumulative CLL- IPI score	Risk category	5-year TFS ^a	
0-1	Low risk	78%	
2–3	Intermediate risk	54%	
4-6	High risk	32%	
7–10	Very high risk	0%	

FISH fluorescence in situ hybridization, IGHV immunoglobulin heavy chain gene, TFS treatment-free survival

^aFor the Mayo validation cohort

LEUKEMIA & LYMPHOMA 2020, VOL. 61, NO. 6, 1512–1515

Modified CLL International Prognostic Index (CLL-LIPI) using lymphocyte doubling time (LDT) in place of IgHV mutation status in resource-limited settings predicts time to first treatment and overall survival

Table 1. Comparison of the CLL-IPI meta-analysis dataset and CLL-LIPI dataset.

Characteristics	This study $(n = 471)$	Meta-analysis CLL-IPI (1) $(n = 3472)$	p Value
Male	336 (71%)	2427 (70%)	NS
Female	135 (29%)	1077 (30%)	
Median age (years)	60	61	NS

Table 1. Comparison of the CLL-IPI meta-analysis dataset and CLL-LIPI dataset.

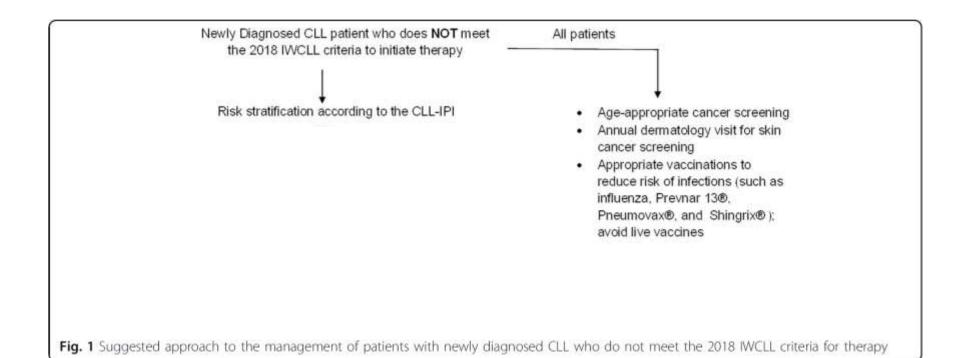
Characteristics	This study $(n = 471)$	Meta-analysis CLL-IPI (1) (n = 3472)	p Value
Male	336 (71%)	2427 (70%)	NS
Female	135 (29%)	1077 (30%)	
Median age (years)	60	61	NS
Age ≤65	330 (70%)	2395 (69%)	
Age >65	120 (30%)	1077 (31%)	
Stage		111111 5 125	NS
Rai 0	64 (14%)	386 (14%)	
Rai I + II	217 (46%)	1428 (50%)	
Rai III + IV	174 (40%)	1025 (36%)	
β2-microglobulin >3.5	141 (40%)	869 (34%)	NS

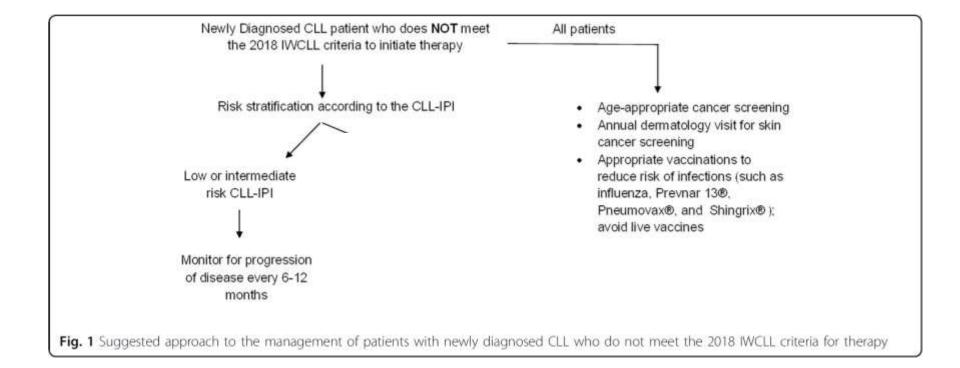
Table 1. Comparison of the CLL-IPI meta-analysis dataset and CLL-LIPI dataset.

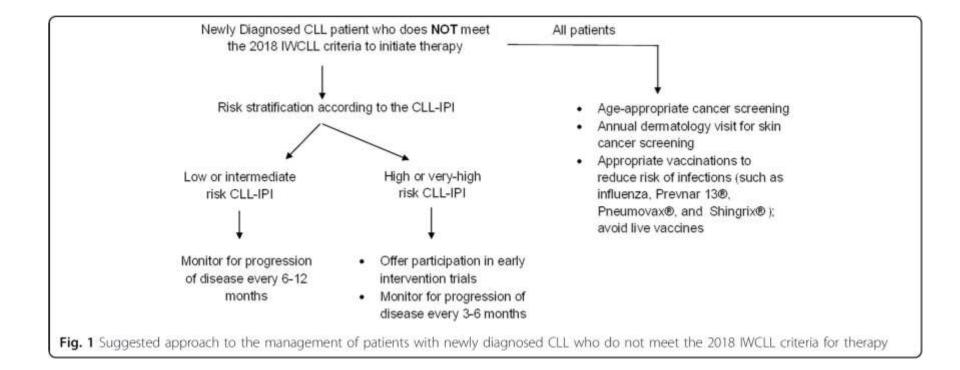
Characteristics	This study $(n = 471)$	Meta-analysis CLL-IPI (1) (n = 3472)	p Value
Male	336 (71%)	2427 (70%)	NS
Female	135 (29%)	1077 (30%)	
Median age (years)	60	61	NS
Age ≤65	330 (70%)	2395 (69%)	
Age >65	120 (30%)	1077 (31%)	
Stage			NS
Rai 0	64 (14%)	386 (14%)	
Rai $I + II$	217 (46%)	1428 (50%)	
Rai III + IV	174 (40%)	1025 (36%)	
β2-microglobulin >3.5	141 (40%)	869 (34%)	NS
FISH			NS
Deletion (17p)	23 (11%)	191 (7%)	
Deletion (11q)	20 (10%)	499 (17%)	
Deletion (13g)	61 (28%)	989 (35%)	
Trisomy 12	27 (12%)	356 (12%)	
Normal	59 (27%)	826 (29%)	
No deletion 11/17	28 (12%)		

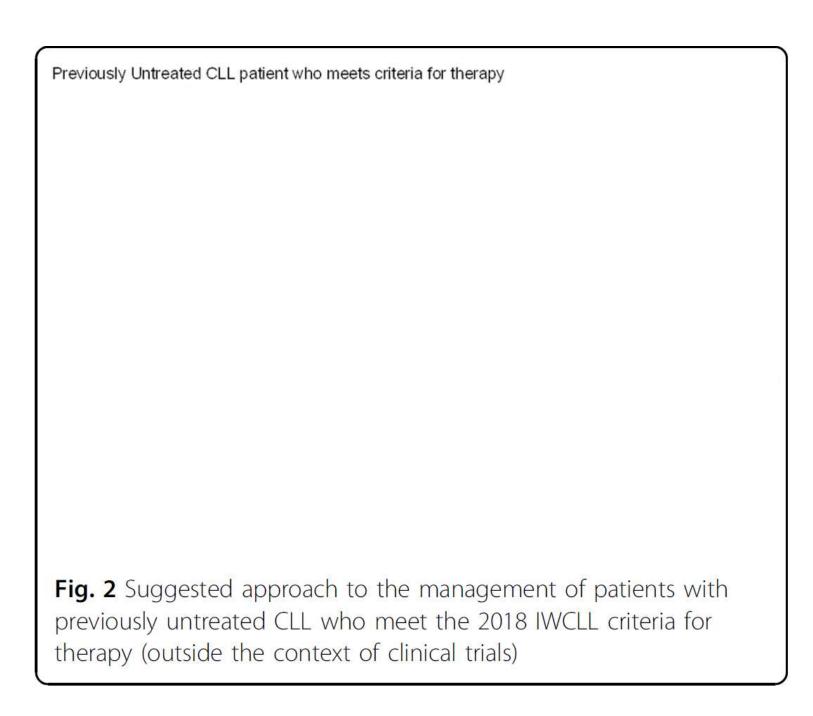
Table 1. Comparison of the CLL-IPI meta-analysis dataset and CLL-LIPI dataset.

Characteristics	This study $(n = 471)$	Meta-analysis CLL-IPI (1) (n = 3472)	p Value
Male	336 (71%)	2427 (70%)	NS
Female	135 (29%)	1077 (30%)	
Median age (years)	60	61	NS
Age ≤65	330 (70%)	2395 (69%)	
Age >65	120 (30%)	1077 (31%)	
Stage			NS
Rai 0	64 (14%)	386 (14%)	
Rai I + II	217 (46%)	1428 (50%)	
Rai III + IV	174 (40%)	1025 (36%)	
β2-microglobulin >3.5	141 (40%)	869 (34%)	NS
FISH			NS
Deletion (17p)	23 (11%)	191 (7%)	
Deletion (11g)	20 (10%)	499 (17%)	
Deletion (13q)	61 (28%)	989 (35%)	
Trisomy 12	27 (12%)	356 (12%)	
Normal	59 (27%)	826 (29%)	
No deletion 11/17	28 (12%)		
IqHV/LDT < 6	LDT < 6 (44.2%)	IgHV unmutated (60%)	.003


Table 1. Comparison of the CLL-IPI meta-analysis dataset and CLL-LIPI dataset.


Characteristics	This study $(n = 471)$	Meta-analysis CLL-IPI (1) (n = 3472)	p Value
Male	336 (71%)	2427 (70%)	NS
Female	135 (29%)	1077 (30%)	
Median age (years)	60	61	NS
Age ≤65	330 (70%)	2395 (69%)	
Age >65	120 (30%)	1077 (31%)	
Stage			NS
Rai 0	64 (14%)	386 (14%)	
Rai I + II	217 (46%)	1428 (50%)	
Rai III + IV	174 (40%)	1025 (36%)	
β2-microglobulin >3.5	141 (40%)	869 (34%)	NS
FISH			NS
Deletion (17p)	23 (11%)	191 (7%)	
Deletion (11g)	20 (10%)	499 (17%)	
Deletion (13q)	61 (28%)	989 (35%)	
Trisomy 12	27 (12%)	356 (12%)	
Normal	59 (27%)	826 (29%)	
No deletion 11/17	28 (12%)		
IgHV/LDT < 6	LDT < 6 (44.2%)	IgHV unmutated (60%)	.003
Risk stratification	n = 218	n = 1214	NS
Low	61 (28%)	341 (28%)	
Intermediate	72 (33%)	474 (39%)	
High	68 (31%)	337 (28%)	
Very high	17 (8%)	62 (5%)	




Newly Diagnosed CLL patient who does NOT meet
the 2018 IWCLL criteria to initiate therapy

Age-appropriate cancer screening
Annual dermatology visit for skin
cancer screening
Appropriate vaccinations to
reduce risk of infections (such as
influenza, Prevnar 13®,
Pneumovax®, and Shingrix®);
avoid live vaccines

Previously Untreated CLL patient who meets criteria for therapy

TP53 status
TP53 disrupted
ibrutinib, and refer to cellular therapy expert

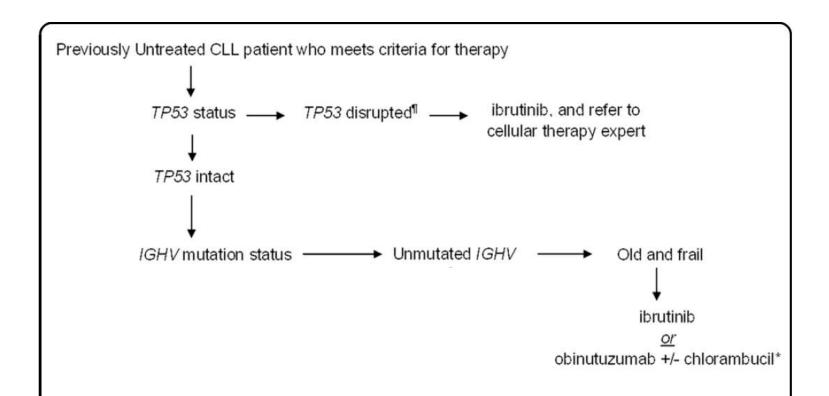
Fig. 2 Suggested approach to the management of patients with previously untreated CLL who meet the 2018 IWCLL criteria for therapy (outside the context of clinical trials)

Previously Untreated CLL patient who meets criteria for therapy

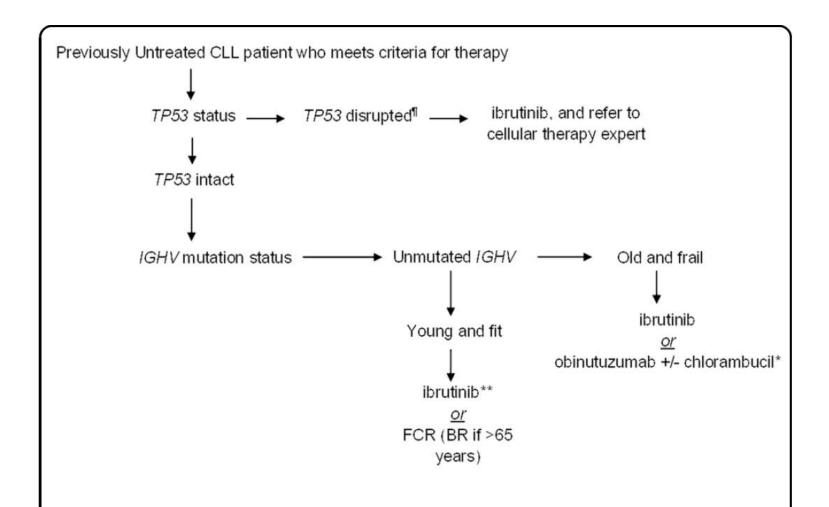
TP53 status
TP53 disrupted
ibrutinib, and refer to cellular therapy expert

TP53 intact

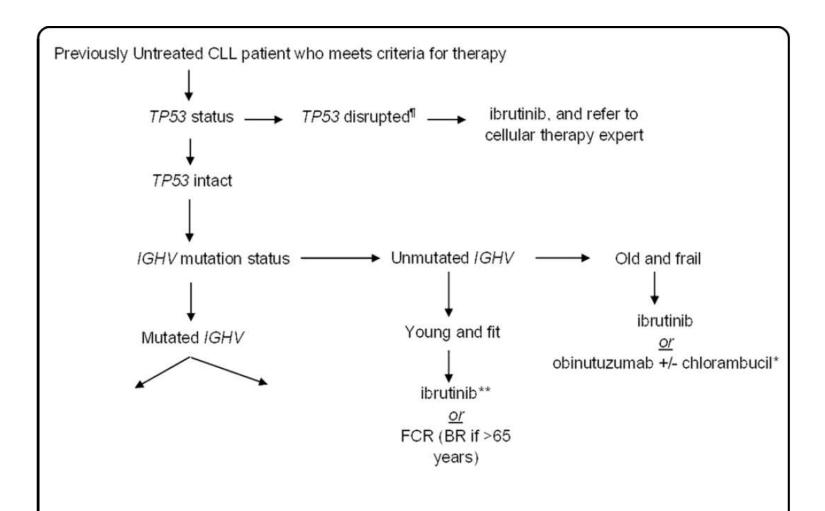
Fig. 2 Suggested approach to the management of patients with previously untreated CLL who meet the 2018 IWCLL criteria for therapy (outside the context of clinical trials)

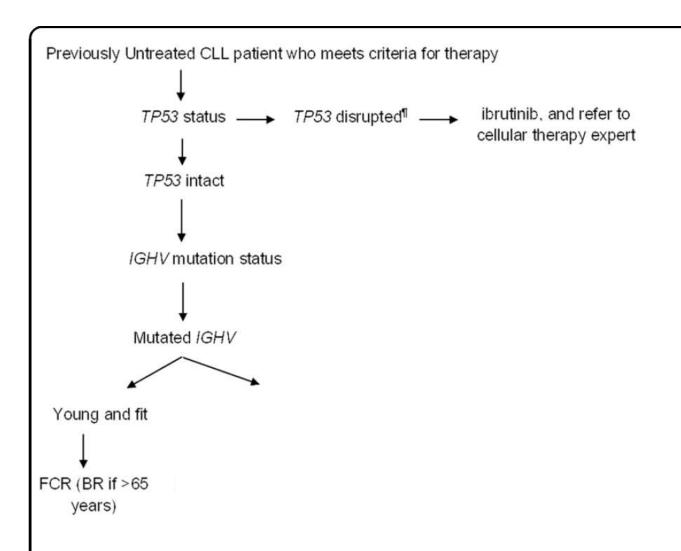

Previously Untreated CLL patient who meets criteria for therapy

TP53 status
TP53 disrupted
ibrutinib, and refer to cellular therapy expert


TP53 intact

IGHV mutation status
Unmutated IGHV
Old and frail


Fig. 2 Suggested approach to the management of patients with previously untreated CLL who meet the 2018 IWCLL criteria for therapy (outside the context of clinical trials)


Fig. 2 Suggested approach to the management of patients with previously untreated CLL who meet the 2018 IWCLL criteria for therapy (outside the context of clinical trials)

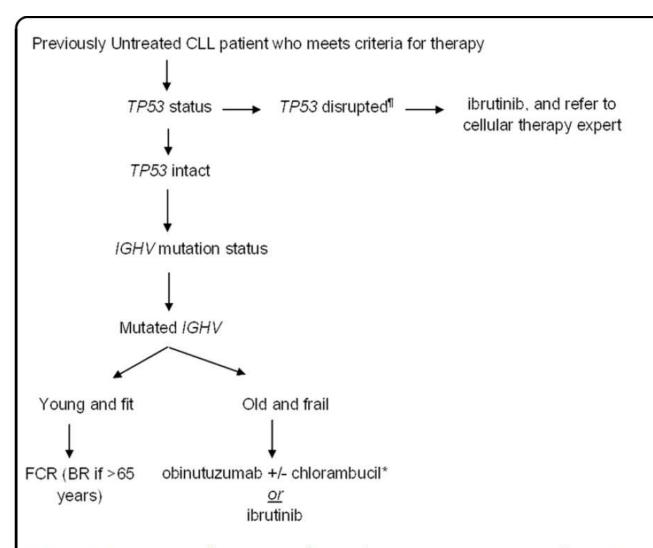

Fig. 2 Suggested approach to the management of patients with previously untreated CLL who meet the 2018 IWCLL criteria for therapy (outside the context of clinical trials)

Fig. 2 Suggested approach to the management of patients with previously untreated CLL who meet the 2018 IWCLL criteria for therapy (outside the context of clinical trials)

Fig. 2 Suggested approach to the management of patients with previously untreated CLL who meet the 2018 IWCLL criteria for therapy (outside the context of clinical trials)

Fig. 2 Suggested approach to the management of patients with previously untreated CLL who meet the 2018 IWCLL criteria for therapy (outside the context of clinical trials)

Stage	del(17p) or p53mut	Fitness	IGVH	Therapy
Binet A-B, Rai 0-II, inactive disease	Irrelevant	Irrelevant	Irrelevant	None

Stage	del(17p) or p53mut	Fitness	IGVH	Therapy
Binet A-B, Rai 0-II, inactive disease	Irrelevant	Irrelevant	Irrelevant	None

Active disease or Binet C or Rai III-IV

Stage del(17p) or p53mut Fitness IGVH Therapy

	Yes	Irrelevant	Irrelevant	Ibrutinib or Venetoclax + Obinutuzumab or Idelalisib + Rituximab (if contraindications for ibrutinib)*
--	-----	------------	------------	--

Active disease or Binet C or Rai III-IV

Stage	del(17p) or p53mut	Fitness	IGVH	Therapy
Active disease or Binet C or Rai III-IV		Go go	М	FCR (BR above 65 years) or ibrutinib*
	No	GO go	U	Ibrutinib or FCR (BR above 65 years)*

Stage	del(17p) or p53mut	Fitness	IGVH	Therapy	
Active disease or Binet C or Rai III-IV	No				
			Slow go	М	Venetoclax + Obinutuzumab or Chlorambucil + Obinutuzumab or Ibrutinib*
		Slow go	U	Venetoclax + Obinutuzumab or Ibrutinib or Chlorambucil + Obinutuzumab*	

^{*} Consider and discuss with patient: long-term vs fixed (6-12 m) duration therapy, lack of convincing evidence of overall survival differences, specific side effects of each therapeutic option (myelosuppression, infections, secondary malignancies for CIT; cardiac toxicity, bleeding and autoimmune disease for Ibru; TLS and infections for Ven-Obi; autoimmune disease (diarrhea) and opportunistic infections for Idelalisib).

Table 1. Response Rates and Survival with Chemoimmunotherapy or Novel Agents for the Treatment of Chronic Lymphocytic Leukemia (CLL).*

Treatment	Disease State	Overall Response (Complete Remission) % (%)	Progression-free Survival	Overall Survival
FCR	Previously untreated CLL ²⁰	90 (44)	Median, 56.8 mo	Median, 12.7 yr
BR	Previously untreated CLL ²¹	96 (31)	Median, 41.7 mo	92% at 3 yr

Table 1. Response Rates and Survival with Chemoimmunotherapy or Novel Agents for the Treatment of Chronic Lymphocytic Leukemia (CLL).*

		Overall Response	Progression-free	
Treatment	Disease State	(Complete Remission)	Survival	Overall Survival
		% (%)		
FCR	Previously untreated CLL ²⁰	90 (44)	Median, 56.8 mo	Median, 12.7 yr
BR	Previously untreated CLL ²¹	96 (31)	Median, 41.7 mo	92% at 3 yr
Chlorambucil plus obinutuzumab	Previously untreated CLL ²²	77.3 (22.3)	Median, 29.2 mo	NA

Table 1. Response Rates and Survival with Chemoimmunotherapy or Novel Agents for the Treatment of Chronic Lymphocytic Leukemia (CLL).*

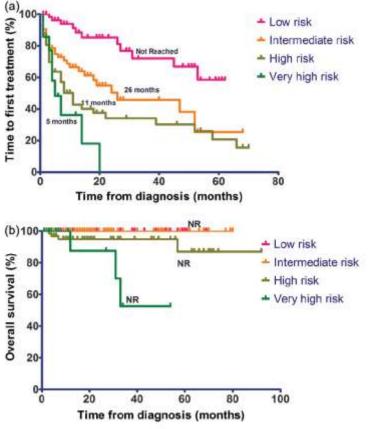
Treatment	Disease State	Overall Response (Complete Remission)	Progression-free Survival	Overall Survival
		% (%)		
FCR	Previously untreated CLL ²⁰	90 (44)	Median, 56.8 mo	Median, 12.7 yr
BR	Previously untreated CLL ²¹	96 (31)	Median, 41.7 mo	92% at 3 yr
Chlorambucil plus obinutuzumab	Previously untreated CLL ²²	77.3 (22.3)	Median, 29.2 mo	NA
Ibrutinib	Relapsed or refractory CLL ¹⁹	89 (10)	Median, 52 mo	55% at 7 yr
Ibrutinib	Previously untreated CLL ^{5,18}	92 (30)	70% at 5 yr	83% at 5 yr

Table 1. Response Rates and Survival with Chemoimmunotherapy or Novel Agents for the Treatment of Chronic Lymphocytic Leukemia (CLL).*

Treatment	Disease State	Overall Response (Complete Remission)	Progression-free Survival	Overall Survival
		% (%)		
FCR	Previously untreated CLL ²⁰	90 (44)	Median, 56.8 mo	Median, 12.7 yr
BR	Previously untreated CLL ²¹	96 (31)	Median, 41.7 mo	92% at 3 yr
Chlorambucil plus obinutuzumab	Previously untreated CLL ²²	77.3 (22.3)	Median, 29.2 mo	NA
Ibrutinib	Relapsed or refractory CLL ¹⁹	89 (10)	Median, 52 mo	55% at 7 yr
Ibrutinib	Previously untreated CLL ^{5,18}	92 (30)	70% at 5 yr	83% at 5 yr
Acalabrutinib	Relapsed or refractory CLL ^{4,23}	94	62% at 45 mo	>90% at 16 mo
Acalabrutinib	Previously untreated CLL ¹⁴	86 (1)	82% at 30 mo	94% at 30 mo
Acalabrutinib plus obinutuzumab	Previously untreated CLL ¹⁴	94 (13)	90% at 30 mo	95% at 30 mo

Table 1. Response Rates and Survival with Chemoimmunotherapy or Novel Agents for the Treatment of Chronic Lymphocytic Leukemia (CLL).*

Treatment	Disease State	Overall Response (Complete Remission)	Progression-free Survival	Overall Survival
		% (%)		
FCR	Previously untreated CLL ²⁰	90 (44)	Median, 56.8 mo	Median, 12.7 yr
BR	Previously untreated CLL ²¹	96 (31)	Median, 41.7 mo	92% at 3 yr
Chlorambucil plus obinutuzumab	Previously untreated CLL ²²	77.3 (22.3)	Median, 29.2 mo	NA
Ibrutinib	Relapsed or refractory CLL ¹⁹	89 (10)	Median, 52 mo	55% at 7 yr
Ibrutinib	Previously untreated CLL ^{5,18}	92 (30)	70% at 5 yr	83% at 5 yr
Acalabrutinib	Relapsed or refractory CLL ^{4,23}	94	62% at 45 mo	>90% at 16 mo
Acalabrutinib	Previously untreated CLL14	86 (1)	82% at 30 mo	94% at 30 mo
Acalabrutinib plus obinutuzumab	Previously untreated CLL ¹⁴	94 (13)	90% at 30 mo	95% at 30 mo
Venetoclax	Relapsed or refractory CLL ⁶	79 (20)	Median, 25 mo	84% at 24 mo
Venetoclax plus rituximab	Relapsed or refractory CLL ⁷	93.3 (26.8)	84.9% at 24 mo	92% at 24 mo
Venetoclax plus obinutuzumab	Previously untreated CLL ¹⁰	84.7 (49.5)	88.2% at 24 mo	91.8% at 24 mo


Indian Scenario

Modified CLL International Prognostic Index (CLL-LIPI) using lymphocyte doubling time (LDT) in place of IgHV mutation status in resource-limited settings predicts time to first treatment and overall survival

Deepesh P. Lad^a , V. Tejaswi^a, Nishant Jindal^a, Pankaj Malhotra^a, Alka Khadwal^a, Gaurav Prakash^a, Arihant Jain^a, Sreejesh Sreedharanunni^b, Manupdesh Singh Sachdeva^b, Shano Naseem^b, Neelam Varma^b and Subhash Varma^a

Figure 1. (a) Time to first treatment according to the CLL-LIPI risk groups. (b) Overall survival according to the CLL-LIPI risk groups.

JCO Global Oncol 6:866-872. © 2020 by American Society of Clinical Oncology

Chronic Lymphocytic Leukemia: Real-World Da From India

V. Tejaswi, MBBS, MD¹; Deepesh P. Lad, MD, DM¹; Nishant Jindal, MD¹; Gaurav Prakash, MD, DM¹; Pankaj Malhotra, MD¹; Alka Khadwal, MD¹; Arihant Jain, MD, DM¹; Sreejesh Sreedharanunni, MD, DM²; Manupdesh Singh Sachdeva, MD²; Shano Naseem, MD²; Neelam Varma, MD²; and Subhash Varma, MD¹

METHODS This was a prospective study (2011-2017) of consecutively diagnosed patients with CLL at a single

JCO Global Oncol 6:866-872. © 2020 by American Society of Clinical Oncology

TABLE 2. Demographic and Clinical Characteristics of Patients With Chronic Lymphocytic Leukemia at Diagnosis (N = 409)

Characteristic	No. (%)
Age at diagnosis, years	
≤ 55	130 (31.8)
> 55	279 (68.2)
> 60	210 (51.3)
> 70	62 (15.1)
Sex	
Male	289 (70.6)
Female	120 (29.4)
Socioeconomic status	
Middle to high	213 (52.1)
Low	196 (47.9)

D	200		41 -	25
Pr	ese	nta	TIOI	n
1-1	COC	IIIa	UUI	

Asymptomatic	173 (42.3)
Lymphadenopathy	117 (28.6)
B symptoms	58 (14.2)
Others	61 (14.9)
ECOG performance status	
0-1	308 (75.3)
2-4	101 (24.7)
CIRS	
< 3	232 (56.7)
≥ 3	177 (43.3)
CIRS by age, years, median (range)
≤ 55	4 (0-11)
> 55	6 (0-16), P < .0001

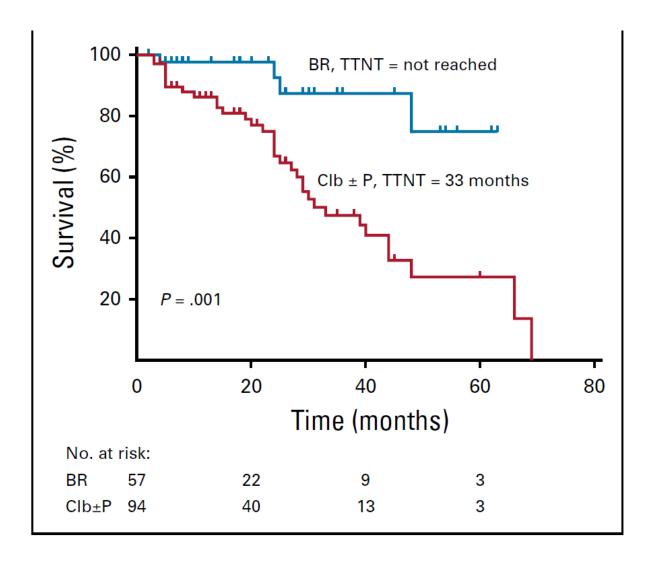
Rai stage	
0	49 (12)
	82 (20)
II	104 (25.4)
III	85 (20.8)
IV	89 (21.8)

FISH (n = 218)	
Deletion (17p)	23 (10.5)
Deletion (11q)	20 (9.2)
Deletion (13q)	61 (28)
Trisomy 12	27 (12.4)
Normal	59 (27.1)
No del 11q/ 17p	28 (12.8)
β_2 microglobulin (n = 348)	
< 3.5	207 (59.5)
≥ 3.5	141 (40.5)
LDT (n = 319)	
≤ 6 months	141 (44.2)
> 6 months	178 (55.8)

Genomic alterations in chronic lymphocytic leukemia and their correlation with clinico-hematological parameters and disease progression

Vishrut K. Srinivasan¹, Shano Naseem¹, Neelam Varma¹, Deepesh P. Lad², Pankaj Malhotra²

Departments of ¹Hematology and ²Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India


Table 2. Cytogenetic abnormalities and somatic mutations detected by MLPA (N=52).

13q14 deletion, N (%)	22 (42.3%)
Trisomy 12, N (%)	7 (13.4%)
11q (<i>ATM</i>) deletion, N (%)	5 (9.6%)
17p (<i>TP53</i>) deletion, N (%)	2 (3.8%)
No abnormality, N (%)	18 (34.6%)
Two abnormalities, N (%)	6 (11.5%)
NOTCH1 c.7541_7542delCT mutation	1 (1.9%)
MYD88 L265P mutation	0 (0.0%)
SF3B1 K700E mutation	0 (0.0%)

Chronic Lymphocytic Leukemia: Real-World Dat From India

V. Tejaswi, MBBS, MD¹; Deepesh P. Lad, MD, DM¹; Nishant Jindal, MD¹; Gaurav Prakash, MD, DM¹; Pankaj Malhotra, MD¹; Alka Khadwal, MD¹; Arihant Jain, MD, DM¹; Sreejesh Sreedharanunni, MD, DM²; Manupdesh Singh Sachdeva, MD²; Shano Naseem, MD²; Neelam Varma, MD²; and Subhash Varma, MD¹

JCO Global Oncol 6:866-872. © 2020 by American Society of Clinical Oncology

FIG 1. Time to next treatment (TTNT) after first-line therapy. BR, bendamustine + rituximab; Clb, chlorambucil; P, prednisolone.

TABLE 3. Treatment Outcomes and Toxicity With Front-Line Clb and BR

Outcome or Toxicity	BR (n = 57; 31.6%)	Clb \pm P (n = 94; 52.2%)
CRu	44 (77.2)	3 (3.2)
PR	8 (14)	67 (71.3)
ORR	52 (91.2)	70 (74.5)
SD	3 (5.3)	20 (21.2)
PD	2 (3.5)	4 (4.3)

TABLE 3. Treatment Outcomes and Toxicity With Front-Line Clb and BR

Outcome or Toxicity	BR (n = 57; 31.6%)	Clb \pm P (n = 94; 52.2%)
CRu	44 (77.2)	3 (3.2)
PR	8 (14)	67 (71.3)
ORR	52 (91.2)	70 (74.5)
SD	3 (5.3)	20 (21.2)
PD	2 (3.5)	4 (4.3)
Neutropenia grade 3/4	30 (52.6)	10 (10.6)
Anemia grade 3/4	8 (14.0)	5 (5.3)
Thrombocytopenia grade 3/4	3 (5.2)	5 (5.3)
Infection grade 3/4/5	22 (38.6)	0
Deaths	3 (5.3)	7 (7.4)
Median TTNT	NR	33
Median OS	NR	NR

TABLE 4. Comparison of the Treatment Outcomes of BR With Clinical Trial and Real-World Data

BR Present Study (n = 57) Eichhorst et al¹⁷ (n = 279) Kleeberg et al¹⁸ (n = 249, age < 70 years)

Neutropenia grade 3/4, %	52.6	59	24.0
Anemia grade 3/4, %	14.0	11	5.6
Thrombocytopenia grade 3/4, %	5.2	14	9.6
Infection grade 3/4/5, %	38.5	26	3.2

TABLE 4. Comparison of the Treatment Outcomes of BR With Clinical Trial and Real-World Data

BR	Present Study ($n = 57$)	Eichhorst et al 17 (n = 279)	Kleeberg et al 18 (n = 249, age < 70 years)
ORR, %	91.2	96	89.9
CR, %	77.2 (CRu)	31	44.9
Median follow-up, months	30.0	36	28.0
Median TTNT/PFS, months	NR (TTNT)	42 (PFS)	36.7 (PFS)
Median OS	NR	92% at 3 years	77% at 3 years
Neutropenia grade 3/4, %	52.6	59	24.0
Anemia grade 3/4, %	14.0	11	5.6
Thrombocytopenia grade 3/4, %	5.2	14	9.6
Infection grade 3/4/5, %	38.5	26	3.2

TABLE 5. Comparison of the Treatment Outcomes of Clb ±P With Clinical Trial Data

Clb ± P

Present Study (n = 04)

Fighborst et el²⁶ (n = 100)

CID ± P	Present Study (n = 94)	Eichhorst et al ²⁰ (n = 100)	Catovsky et al 27 (n = 387)
Clb dose	10 mg/m ² ± prednisolone 60 mg/m ² D1-5	0.4-0.8 mg/kg D1 & 15	10 mg/m² D1-7
ORR, %	74.5	51	72.0
CR, %	3.2	0	7.0
Median TTNT/PFS	33 (TTNT)	18 (PFS)	20 (PFS)
Median OS	NR	64	54% at 5 years
Neutropenia grade 3/4, %	10.6	12	10.6
Anemia grade 3/4, %	5.3	27	0
Thrombocytopenia grade 3/4, %	5.3	20	7.9
Infection grade 3/4, %	0	4	3.0

TABLE 6. Direct Costs for Diagnosis, Investigations, and Treatment of Chronic Lymphocytic Leukemia in India and United States

Direct Cost	India	United States ²¹
Diagnosis	\$80	-
Prognosis (FISH + IgHV + β2m)	\$150	· —
Treatment		
BR regimen (6 cycles)	\$2,300	\$94,754
Chlorambucil (12 cycles)	\$120	\$9,348
Ibrutinib (1 month)	\$2,000	\$10,270

CONCLUSION Indian patients with CLL are younger in chronological age but have higher morbid Treatment outcomes with biosimilar fixed-dose BR are comparable to those reported in the literature. On is still a valid option, given the economic burden of the disease and treatment.	

Reduced Dose Ibrutinib Due to Financial Toxicity in CLL

Deepesh P. Lad¹ · Pankaj Malhotra¹ · Alka Khadwal¹ · Gaurav Prakash¹ Arihant Jain¹ · Subhash Varma¹

2016 to April 2018. Reduced dose ibrutinib was defined as a sustained (≥ 12 months) dosing at < 420 mg/day, either at treatment initiation or within 3 months from starting therapy. Progression free survival was compared using

Indian J Hematol Blood Transfus (Apr-June 2019) 35(2):260-264

Reduced Dose Ibrutinib Due to Financial Toxicity in CLL

Deepesh P. Lad¹ · Pankaj Malhotra¹ · Alka Khadwal¹ · Gaurav Prakash¹ Arihant Jain¹ · Subhash Varma¹

Table 2 Comparison of patients taking a reduced dose and standard dose ibrutinib

	Reduced dose ibrutinib $(n = 3)$	Standard dose ibrutinib ($n = 12$)	p value
Age (years) median ± SD	60 ± 10.5	59.5 ± 10.1	NS
FISH (n)			NS
del. 17p	Ĩ	2	
del. 11q	2	3	
Others	0	7	
Median no. of prior therapies (range)	2 (1-3)	1.5 (0-4)	NS
Median follow-up (months)	12	10	NS
Adverse events (≥ grade3)	0	4/14 (28.5%)	< 0.0001
ORR	100%	91.6%	NS
Median PFS	NR	NR	NS

the two groups. The overall response rate and median PFS were also not significantly different between the two groups. In the limited patient numbers and follow-up period we show that outcomes of reduced dose ibrutinib are comparable to standard dose ibrutinib but with fewer adverse events. This study provides a proof of concept that a subset of patients might do well on reduced dose ibrutinib.

CLINICAL TRIALS AND OBSERVATIONS

A pilot study of lower doses of ibrutinib in patients with chronic lymphocytic leukemia

Lisa S. Chen, ^{1,*} Prithviraj Bose, ^{2,*} Nichole D. Cruz, ² Yongying Jiang, ³ Qi Wu, ³ Philip A. Thompson, ² Shuju Feng, ⁴ Michael H. Kroll, ⁴ Wei Qiao, ⁵ Xuelin Huang, ⁵ Nitin Jain, ² William G. Wierda, ² Michael J. Keating, ² and Varsha Gandhi^{1,2}

KEY POINTS

- A pilot trial evaluated stepwise reduction of ibrutinib dose in patients with CLL from 420 to 280 to 140 mg/d over three 28-day cycles.
- BTK occupancy, signaling, and biomarker data show that a lower dose of ibrutinib after 1 full dose cycle is enough for biological activity.

The impact of dose modification and temporary interruption of ibrutinib on outcomes of chronic lymphocytic leukemia patients in routine clinical practice

```
Sameer A. Parikh<sup>1</sup> | Sara J. Achenbach<sup>2</sup> | Timothy G. Call<sup>1</sup> | Kari G. Rabe<sup>2</sup> | Wei Ding<sup>1</sup> | Jose F. Leis<sup>3</sup> | Saad S. Kenderian<sup>1</sup> | Asher A. Chanan-Khan<sup>4</sup> | Amber B. Koehler<sup>1</sup> | Susan M. Schwager<sup>1</sup> | Eli Muchtar<sup>1</sup> | Amie L. Fonder<sup>1</sup> | Kristen B. McCullough<sup>5</sup> | Adrienne N. Nedved<sup>5</sup> | Matthew D. Smith<sup>5</sup> | Susan L. Slager<sup>2</sup> | Neil E. Kay<sup>1</sup> | Heidi D. Finnes<sup>5</sup> | Tait D. Shanafelt<sup>6</sup>
```

2.38, P = .015) was associated with shorter OS. Initial ibrutinib dose and dose modification during therapy did not appear to impact EFS or OS. These findings illustrate

LEUKEMIA & LYMPHOMA 2019, VOL. 60, NO. 7, 1650–1655 https://doi.org/10.1080/10428194.2018.1554862

ORIGINAL ARTICLE: CLINICAL

Dose reductions in ibrutinib therapy are not associated with inferior outcomes in patients with chronic lymphocytic leukemia (CLL)

Othman S. Akhtar^a, Kristopher Attwood^b, Ian Lund^c, Ryan Hare^d, Francisco J. Hernandez-Ilizaliturri^{a,c} and Pallawi Torka^{a,c}

^aDepartment of Medicine, State University of New York at Buffalo, Buffalo, NY, USA; ^bDepartment of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ^cDepartment of Medicine, Division of Lymphoma/Myeloma, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ^dRoswell Park Pharmacy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA

Published online: 13 November 2020

Efficacy, safety, and quality of life of generic and innovator ibrutinib in Indian CLL patients

Charanpreet Singh¹ · Nishant Jindal¹ · Padma Youron¹ · Pankaj Malhotra¹ · Gaurav Prakash¹ · Alka Khadwal¹ · Arihant Jain¹ · Sreejesh Sreedharanunni² · Man Updesh Singh Sachdeva² · Shano Naseem² · Neelam Varma² · Subhash Varma¹ · Deepesh P. Lad¹

- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Variable		TN CLL $(N = 7)$	R/R CLL $(N = 25)$	
Median follow-up (range)	months	5 (1-37)	11 (1-43)	
Age (median)		59 years (51-70)	61 years (37-84)	
Gender		Males 6, Females 1	Males 16, Females 9	
Rai stage	1	2 (28%)	6 (24%)	
	2	3 (43%)	10 (40%)	
	3	1 (14%)	7 (28%)	
	4	1 (14%)	2 (8%)	
FISH del 11q		2 (28%)	6 (24%)	
FISH del 17p		4 (57%)	5 (20%)	
CLL LIPI	Low	0	8 (32%)	
	Intermediate	2 (28%)	7 (28%)	
	High	2 (28%)	7 (28%)	
	Very high	3 (43%)	3 (12%)	
Ibrutinib	Innovator	5 (72%)	17 (68%)	
	Generic	2 (28%)	8 (32%)	
Response to ibrutinib	PR	7 (100%)	10 (40%)	
	PRL	-	7 (28%)	
	SD	22	4 (16%)	
	PD	=	4 (16%)	
Ibrutinib dose Reduction		1 (14%)	13 (52%)	
Due to AE		1	10 (40%)	
Due to financial reasons		#	3 (12%)	
Grade 3/4 AE		=	13 (52%)	
Infections				
Grade 3/4		8	6 (24%)	
Grade 5		-	5 (20%)	
Ibrutinib discontinuation				
Due to AE		=		
Due to PD		#		
Death		0	11 (44%)	
Median PFS		Not reached	14 months	

Variable Median follow-up (range) months		Innovator ibrutinib (N = 17)	Generic ibrutinib (N = 8 6 months (3-23)	
		12 months (1-43)		
Age (median)		61 ± 12.8 years	58.25 ± 7.6 years	
FISH del 17p		3 (18%)	2 (25%)	
Prior lines of therapy	≤ 2	14 (82%)	4 (50%)	
	> 2	3 (18%)	4 (50%)	
Response to ibrutinib	PR	6 (35%)	4 (50%)	
	PRL	5 (30%)	2 (25%)	
	SD	2 (12%)	2 (25%)	
	PD	4 (23%)	_	
Ibrutinib dose reduction		8 (47%)	5 (62%)	
Due to AE		7	3	
Due to financial reasons		1	2	
Neutropenia grade 3-4		1 (6%)	1 (12%)	
Thrombocytopenia grade	3-4	2 (12%)	1 (12%)	
Bleeding grade 3-4		1 (6%)	-	
Diarrhoea grade 3-4		2 (12%)	1 (12%)	
Infection grade 3-5		5 (29%)	6 (75%)	
Deaths		7 (41%)	4 (50%)	
Median PFS (months)		14	18	

Table 3 Comparison of clinical trial and real-world data of ibrutinib discontinuation and dose reduction rates and causes in R/R CLL

Variable	Clinical trial (3)	Real-world Sweden (12)	Real-world USA (11)	Our study	
n	195	95	536	25	
Median follow-up	44 months	30 months	17 months	11 months	
Median age	67 (30-86)	69	60 (22-95)	61 (37-84)	
High risk	60%	63%	40%	40%	
ORR	91%	84%	NA	68%	
Discontinuation rates	39%	49%	43%	44% 24% 20%	
Due to AE	12%	20%	21.6%		
Due to PD	27%	19%	9%		
Dose reductions	13.3	26.3%	20%	52%	
Infections	23% (gr3-4)	51% (grade 3-4)	10.7%	24% (grade 3-4)	
		7.4% (grade 5)		20% (grade 5)	
Death	NA	39%	NA	44%	
Median PFS	Not reached	35 months	35 months	14 months	

Eur J Haematol. 2020;105:755-762.

Quality of life in patients of chronic lymphocytic leukemia using the EORTC QLQ-C30 and QLQ-CLL17 questionnaire

```
Padma Youron<sup>1</sup> | Charanpreet Singh<sup>1</sup> | Nishant Jindal<sup>1</sup> | Pankaj Malhotra<sup>1</sup> | Alka Khadwal<sup>1</sup> | Arihant Jain<sup>1</sup> | Gaurav Prakash<sup>1</sup> | Neelam Varma<sup>2</sup> | Subhash Varma<sup>1</sup> | Deepesh P. Lad<sup>1</sup>
```

Methods: The EORTC QLQ-C30 and QLQ-CLL17 questionnaire validated in regional languages were administered to 127 consecutive CLL and 100 age-matched, healthy controls at a single center from 2018 to 2019.

Eur J Haematol. 2020;105:755-762.

Quality of life in patients of chronic lymphocytic leukemia using the EORTC QLQ-C30 and QLQ-CLL17 questionnaire

```
Padma Youron<sup>1</sup> | Charanpreet Singh<sup>1</sup> | Nishant Jindal<sup>1</sup> | Pankaj Malhotra<sup>1</sup> | Alka Khadwal<sup>1</sup> | Arihant Jain<sup>1</sup> | Gaurav Prakash<sup>1</sup> | Neelam Varma<sup>2</sup> | Subhash Varma<sup>1</sup> | Deepesh P. Lad<sup>1</sup>
```

TABLE 2 Comparison of global health, functional scales, and summary scores of QoL in CLL patients on W&W, CIT, and ibrutinib compared to healthy controls

	Controls (n = 100)	W&W (n = 52)	on CIT (n = 23)	after CIT (n = 47)	on ibrutinib (n = 15)	– P value (clinically
	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD	significance)
QL	96.6 ± 6.2	78.8 ± 19.7	71.7 ± 14	74.9 ± 17.5	75.5 ± 28.9	<.0001 (L)
PF	96.2 ± 6.9	87.1 ± 3.9	84.7 ± 15.2	85.2 ± 13.6	88.4 ± 15.6	<.0001 (S)
RF	99.8 ± 1.6	90.7 ± 20.4	89.6 ± 15.3	89.3 ± 16.8	83.3 ± 24.4	<.0001 (S)
EF	100 ± 0	78.5 ± 22.8	79.7 ± 17.1	78.1 ± 21	86.6 ± 23.9	<.0001 (L)
CF	99.6 ± 2.3	88.4 ± 17.3	93.6 ± 9.8	91.4 ± 17.7	94.4 ± 10.3	<.0001 (S, M for W&W)
SF	100 ± 0	92.9 ± 14.9	82.5 ± 27.1	86.5 ± 26.3	93.3 ± 15.2	<.0001 (S, L for CIT)[$P = .05(M)$ CIT v ibrutinib]
SS	93.9 ± 4.3	88.7 ± 10.9	87.2 ± 8.3	88.3 ± 12	90.5 ± 12	.0006 (L)

Abbreviations: CF, cognitive functioning; EF, emotional functioning; QL, global health status; L, large, M, medium; PF, physical functioning; RF, role functioning; S, small clinical significance; SF, social functioning, SS, Summary score.

Eur J Haematol. 2020;105:755-762.

Quality of life in patients of chronic lymphocytic leukemia using the EORTC QLQ-C30 and QLQ-CLL17 questionnaire

```
Padma Youron<sup>1</sup> | Charanpreet Singh<sup>1</sup> | Nishant Jindal<sup>1</sup> | Pankaj Malhotra<sup>1</sup> | Alka Khadwal<sup>1</sup> | Arihant Jain<sup>1</sup> | Gaurav Prakash<sup>1</sup> | Neelam Varma<sup>2</sup> | Subhash Varma<sup>1</sup> | Deepesh P. Lad<sup>1</sup>
```

Conclusions: Quality of life is severely affected in CLL patients on W&W. Global health status and worries about future health and functioning were major concerns. Socioeconomic status but not age or gender impacted QoL. Patients on ibrutinib had better QoL than on CIT.

Leukemia & Lymphoma, October 2012; 53(10): 1961–1965

Assessment of 285 cases of chronic lymphocytic leukemia seen at single large tertiary center in Northern India

Ajay Gogia¹, Atul Sharma¹, Vinod Raina¹, Lalit Kumar¹, Sreenivas Vishnubhatla², Ritu Gupta³ & Rajive Kumar³

Table I. Clinicohematological parameters.

Baseline characteristics	
Age (range)	59 years (28-90)
Males, $n(\%)$	209 (73.33%)
Females, n (%)	76 (26.67%)
Hepatomegaly, n (%)	88 (40.36%)
Splenomegaly, n (%)	111 (50.91%)
Hemoglobin (g/dL)	11.50 (4-16)
Total leukocyte count ($\times 10^9/L$)	50 (82-430)
Absolute lymphocyte count ($\times 10^9/L$)	40.9 (53-369)
Platelet count ($\times 10^9/L$)	150 (10-420)
Rai stage	
0, n(%)	27 (9.5%)
I, n (%)	46 (16.1%)
II, n (%)	95 (33.3%)
III, n (%)	57 (20.1%)
IV, n (%)	60 (21.1%)

¹Department of Medical Oncology, ²Department of Biostatistics and ³Laboratory Oncology Unit, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India

Table II. Comorbidities (in various different combinations) (n = 96).

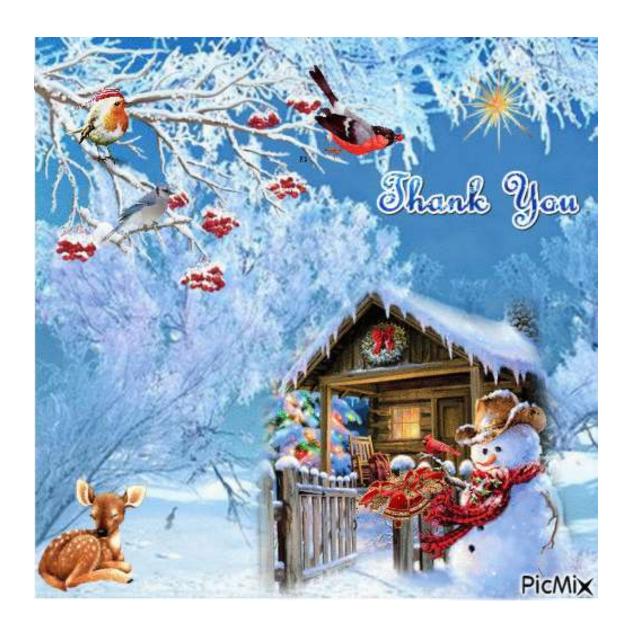

Hypertension	50
Diabetes mellitus	47
Coronary artery disease	21
Chronic obstructive pulmonary disease	18
Hypothyroidism	10
Cirrhosis/chronic hepatitis	4

Table III. First-line chemotherapy and response.

	n = 141 (%)	CR (%)	PR (%)	ORR (%)	SD (%)	PD (%)
Chlorambucil-based	96 (67.85%)	3 (3.1%)	63 (65.6%)	66 (68.7%)	13 (13.4%)	17 (17.7%)
Fludarabine-based	27 (19.28%)	12 (44.44%)	12 (44.44%)	24 (88.88%)	2 (7.4%)	1 (3.7%)
CVP/CHOP	14 (10%)	1 (7.01%)	9 (64%)	10 (71%)	1 (7.1%)	3 (21.4%)

Summary & Conclusions

- Great progress in the field of CLL
- Especially in last decade
- Risk stratification (FISH and IGHV mutation)
- Asymptomatic: Wait and watch
- Symptomatic/Rai III/IV: Treatment is based on FISH and IGHV mutations
- Ibrutinib for high-risk
- BR/FCR/Chl-R+Pred for middle-low socio
- Generic Ibrutinib has similar efficacy as innovator

